

COMPUTATIONAL BIOLOGIST/CHEMIST

Bay Area, California

□ 201-838-3216 | ■ erazokp@gmail.com | □ kerazo93 | □ erazokp | ♥ KevinPErazo

Education ____

University of Illinois at Urbana-Champaign

Champaign, IL

MS IN COMPUTER SCIENCE - DATA SCIENCE

2022 - Present

GPA: 4.0 / 4.0

Stanford University

Stanford, CA

PHD IN CHEMISTRY

2015 - 2022

GPA: 3.71 / 4.0

Massachusetts Institute of Technology

Cambridge, MA

B.S. IN CHEMISTRY AND BIOLOGY

2011 - 2015

GPA: 4.6 / 5.0

Experience _

Brightseed Bio

South San Francisco, CA

COMPUTATIONAL BIOLOGIST/CHEMIST

2022 - Present

- Led the design and development of (deep learning) transformer models for *de novo* annotation of small molecule metabolites from high-resolution mass spectra.
- Performed standard metabolomics analysis (from raw files to putative annotations) and ligand-based bioactivity prediction for multiple partnership programs.
- Initiated the computational biology journal club to discuss recent research developments and possible new directions for internal projects.

Snyder Lab Stanford, CA

GRADUATE RESEARCH ASSISTANT

2019 - 2022

- Applied DDA and DIA mass spectrometry techniques to profile the serum lipidome, proteome and metabolome of patients with (and without) Segmental Graft Dysfunction (SGD).
- Performed single/multi-omics analysis and integration with clinical and demographic data to identify differentially regulated pathways in SGD and predict liver rejection.
- Coordinated with clinical (UPenn) and research (Stanford) stakeholders to define project outcomes and managed the research agenda within Snyder Lab.

Khosla Lab Stanford, CA

GRADUATE RESEARCH ASSISTANT

2016 - 2019

- Characterized small molecule activators of 6-Deoxyerythronolide B Synthase (DEBS) turnover their structure, function, binding, and possible mechanisms of action to optimize *in vitro* antibiotic production.
- Investigated the structure and conformational changes of partial and hybrid DEBS constructs via X-ray crystallography and FRET strategies, respectively.

Relevant Coursework

University of Illinois at Urbana-Champaign

COMPUTER SCIENCE & DATA SCIENCE

• CS 598: Deep Learning for Healthcare

• CS 447: Natural Language Processing

• CS 416: Data Visualization

Stanford University

MACHINE LEARNING & STATISTICAL MODELING

- CS 229: Machine Learning
- STATS 200: Introduction to Statistical Inference
- CS 373: Statistical & Machine Learning Methods for Genomics
- STATS 315A: Modern Applied Statistics: Learning
- CS 273B: Deep Learning in Genomics and Biomedicine
- CS 161: Design and Analysis of Algorithms

Publications

By RECENCY

- Shen, X. <u>et al</u>. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. *Nature Biomedical Engineering* (2023).
- <u>Kevin Paul Erazo Castillo</u>, Michael Snyder, Carolyn R. Bertozzi, and Chaitan Khosla. *Multi-Omic Characterization of Segmental Graft Dysfunction in Liver Transplant Patients*. 2022. https://purl.stanford.edu/fr977vj0087>.
- Sanchez-deAlcazar, D., Mejias, S. H., <u>Erazo, K.</u>, Sot, B. & Cortajarena, A. L. Self-assembly of repeat proteins: Concepts and design of new interfaces. *Journal of Structural Biology* **201**, 118–129 (2018).
- Mejías, S. H. <u>et al</u>. Repeat protein scaffolds: Ordering photo- and electroactive molecules in solution and Solid State. *Chemical Science* **7**, 4842–4847 (2016).

Skills _____

Programming Python (primary), R

Data Science NumPy, Pandas, Scikit-learn, SciPy, statsmodels || Tydiverse, glmnet, Limma

Deep Learning PyTorch, Keras, Tensorflow

Cheminformatics RDKit, OpenBabel, AutoDock, PyMol **Environments** Mac, Linux, AWS, AWS-Sagemaker

Biochemistry Plasmid design, heterelogous expression, assay development, protein crystallography, small molecule synthesis

Languages English, Spanish